Discrete solution of the electrokinetic equations.
نویسندگان
چکیده
We present a robust scheme for solving the electrokinetic equations. This goal is achieved by combining the lattice-Boltzmann method with a discrete solution of the convection-diffusion equation for the different charged and neutral species that compose the fluid. The method is based on identifying the elementary fluxes between nodes, which ensures the absence of spurious fluxes in equilibrium. We show how the model is suitable to study electro-osmotic flows. As an illustration, we show that, by introducing appropriate dynamic rules in the presence of solid interfaces, we can compute the sedimentation velocity (and hence the sedimentation potential) of a charged sphere. Our approach does not assume linearization of the Poisson-Boltzmann equation and allows us for a wide variation of the Peclet number.
منابع مشابه
Two-fluid Electrokinetic Flow in a Circular Microchannel (RESEARCH NOTE)
The two-fluid flow is produced by the combined effects of electroosmotic force in a conducting liquid and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes equations are solved analytically; and the effects of governing parameters are examined. Poiseuille number increases with increasing the parameters involved. In the absence of pressure gradient, the ...
متن کاملNumerical Solution of Volterra-Fredholm Integral Equations with The Help of Inverse and Direct Discrete Fuzzy Transforms and Collocation Technique
متن کامل
A new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملInvestigation of electrokinetic mixing in 3D non-homogenous microchannels
A numerical study of 3D electrokinetic flows through micromixers was performed. The micromixers considered here consisted of heterogeneous rectangular microchannels with prescribed patterns of zeta-potential at their walls. Numerical simulation of electroosmotic flows within heterogeneous channels requires solution of the Navier-Stokes, Ernest-Plank and species concentration equations. It is kn...
متن کاملDiscrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients
This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...
متن کاملA meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 121 2 شماره
صفحات -
تاریخ انتشار 2004